Types
EAGO.AbstractCache — Typeabstract type AbstractCacheAbstract supertype used for information storage object the directed acyclic graph.
EAGO.AbstractCacheAttribute — Typeabstract type AbstractCacheAttributeAbstract supertype used for attributes stored in a cache.
EAGO.AbstractDirectedGraph — Typeabstract type AbstractDirectedGraphAbstract supertype for generic directed graph structure.
EAGO.AbstractEAGOConstraint — Typeabstract type AbstractEAGOConstraintAn abstract super-type used for representing constraints built by EAGO's backend.
EAGO.AffineFunctionEq — Typemutable struct AffineFunctionEq <: EAGO.AbstractEAGOConstraintRepresentation of an affine equality. Currently only used for bound tightening.
terms::Vector{Tuple{Float64, Int64}}constant::Float64len::Int64
EAGO.AffineFunctionIneq — Typemutable struct AffineFunctionIneq <: EAGO.AbstractEAGOConstraintRepresentation of an affine inequality. Currently only used for bound tightening.
terms::Vector{Tuple{Float64, Int64}}constant::Float64len::Int64
EAGO.AtomType — TypeAtomTypeEAGO.BufferedNonlinearFunction — Typemutable struct BufferedNonlinearFunction{V, N, T<:RelaxTag} <: EAGO.AbstractEAGOConstraintStores a general nonlinear function with a buffer represented by the sum of a tape and a scalar affine function.
EAGO.BufferedQuadraticEq — Typemutable struct BufferedQuadraticEq <: EAGO.AbstractEAGOConstraintRepresentation of a general quadratic equality constraint with a buffer.
func::MathOptInterface.ScalarQuadraticFunction{Float64}minus_func::MathOptInterface.ScalarQuadraticFunction{Float64}buffer::Dict{Int64, Float64}saf::MathOptInterface.ScalarAffineFunction{Float64}len::Int64
EAGO.BufferedQuadraticIneq — Typemutable struct BufferedQuadraticIneq <: EAGO.AbstractEAGOConstraintRepresentation of a general quadratic inequality constraint with a buffer.
func::MathOptInterface.ScalarQuadraticFunction{Float64}buffer::Dict{Int64, Float64}saf::MathOptInterface.ScalarAffineFunction{Float64}len::Int64
EAGO.BufferedSOC — Typemutable struct BufferedSOC <: EAGO.AbstractEAGOConstraintRepresentation of a second-order cone with a buffer.
EAGO.DirectedTree — TypeDirectedTreeA tree graph with a single sink node.
EAGO.EAGOParameters — Typemutable struct EAGOParametersStorage for parameters that do not change during a global solve.
presolve_scrubber_flag::Bool: Should EAGO attempt to remove type-assert issues for user-defined functions (default = false)presolve_to_JuMP_flag::Bool: Create and use DAG representations of user-defined functions (default = false)presolve_flatten_flag::Bool: Rerrange the DAG using registered transformations (default = false)conic_convert_quadratic::Bool: Attempt to bridge convex constraint to second-order cone (default = false)log_on::Bool: Turn logging on; record global bounds, node count, and run time. Additional options are available for recording information specific to subproblems (default = false)log_subproblem_info::Bool: Turn on logging of times and feasibility of subproblems (default = false)log_interval::Int64: Log data everylog_intervaliterations (default = 1)verbosity::Int64: The amount of information that should be printed to console while solving. Values range from 0 - 4: 0 is silent, 1 shows iteration summary statistics only, 2-4 show varying degrees of detail about calculations within each iteration (default = 1)output_iterations::Int64: Display summary of iteration to console everyoutput_iterations(default = 1000)header_iterations::Int64: Display header for summary to console everyoutput_iterations(default = 100000)branch_cvx_factor::Float64: Convex coefficient used to select branch point. Branch point is given bybranch_cvx_factor*xmid + (1-branch_cvx_factor)*xsol(default = 0.25)branch_offset::Float64: Minimum distance from bound to have branch point, normalized by width of dimension to branch on (default = 0.15)branch_pseudocost_on::Bool: Indicate that pseudocost branching should be used (default = false)branch_variable::Vector{Bool}: Variables to branch on (default is all nonlinear)branch_max_repetitions::Int64: [FUTURE FEATURE, NOT CURRENTLY IMPLEMENTED] Number of times to repeat node processing prior to branching (default = 4)branch_repetition_tol::Float64: [FUTURE FEATURE, NOT CURRENTLY IMPLEMENTED] Volume ratio tolerance required to repeat processing the current node (default = 0.9)node_limit::Int64: Maximum number of nodes (default = 1E7)time_limit::Float64: Maximum CPU time in seconds (default = 3600)iteration_limit::Int64: Maximum number of iterations (default 1E9)absolute_tolerance::Float64: Absolute tolerance for termination (default = 1E-3)relative_tolerance::Float64: Relative tolerance for termination (default = 1E-3)absolute_constraint_feas_tolerance::Float64: Absolute constraint feasibility tolerance (default = 1E-8)cp_depth::Int64: Depth in B&B tree above which constraint propagation should be disabled (default = 0)cp_repetitions::Int64: Number of times to repeat forward-reverse pass routine (default = 0)cp_tolerance::Float64: Disable constraint propagation if the ratio of new node volume to beginning node volume exceeds this number (default = 0.99)cp_interval_only::Bool: Use only valid interval bounds during constraint propagation (default = false)obbt_depth::Int64: Depth in B&B tree above which OBBT should be disabled (default = 6)obbt_repetitions::Int64: Number of repetitions of OBBT to perform in preprocessing (default = 3)obbt_aggressive_on::Bool: Turn on aggresive OBBT (default = true)obbt_aggressive_max_iteration::Int64: Maximum iteration to perform aggresive OBBT (default = 2)obbt_aggressive_min_dimension::Int64: Minimum dimension to perform aggresive OBBT (default = 2)obbt_tolerance::Float64: Tolerance to consider bounds equal (default = 1E-10)fbbt_lp_depth::Int64: Depth in B&B tree above which linear FBBT should be disabled (default = 1000)fbbt_lp_repetitions::Int64: Number of repetitions of linear FBBT to perform in preprocessing (default = 3)dbbt_depth::Int64: Depth in B&B tree above which duality-based bound tightening should be disabled (default = 1E10)dbbt_tolerance::Float64: New bound is considered equal to the prior bound if within dbbt_tolerance (default = 1E-8)relax_tag::RelaxTag: RelaxTag used to specify type of McCormick operator (default = NS())subgrad_tighten::Bool: Perform tightening of interval bounds using subgradients at each factor in each nonlinear tape during a forward pass (default = true)reverse_subgrad_tighten::Bool: Perform tightening of interval bounds using subgradients at each factor in each nonlinear tape during a reverse pass (default = false)subgrad_tol::Float64: Outer-round computed subgradient bounds by this amount (default = 1E-10)mul_relax_style::Int64: Select the type of relaxation to use for the bilinear term (multiplication): 0 corresponds to a standard McCormick arithmetic approach. Settings 1-3 augment the standard McCormick relaxation with implied apriori relaxations: (1) corresponds to a subgradient-based apriori relaxation approach; (2) corresponds to an affine arithmetic-based apriori approach; and (3) corresponds to a enumerative apriori relaxation-based approach (default = 0)cut_min_iterations::Int64: Minimum number of cuts at each node to attempt (unsafe cuts not necessarily added) (default = 2)cut_max_iterations::Int64: Maximum number of cuts at each node to attempt (default = 8)cut_tolerance_abs::Float64: Absolute tolerance checked for continuing cut (default = 1E-6)cut_tolerance_rel::Float64: Relative tolerance checked for continuing cut (default = 1E-3)cut_safe_on::Bool: Use tolerances to determine safe cuts in a Khajavirad 2018 manner (default = true)cut_safe_l::Float64: Lower tolerance for safe-lp cut, Khajavirad 2018 (default = 1E-7)cut_safe_u::Float64: Upper tolerance for safe-lp cut, Khajavirad 2018 (default = 1E7)cut_safe_b::Float64: Constant tolerance for safe-lp cut, Khajavirad 2018 (default = 1E9)upper_bounding_depth::Int64: Solve upper problem for every node with depth less thanupper_bounding_depth, and otherwise solve upper problems with a probability of(1/2)^(depth-upper_bounding_depth)(default = 8)domain_violation_guard_on::Bool: (Unused) Protect against domain violation (default = false)domain_violation_ϵ::Float64: (Unused) Amount about a domain violation to ignore when propagating bounds (default = 1E-9)user_solver_config::Bool: If true, EAGO forgoes its default configuration process for subsolvers (default = false)integer_abs_tol::Float64: Absolute tolerance used to check for integrality of decision variables (default = 1E-9)integer_rel_tol::Float64: Relative tolerance used to check for integrality of decision variables (default = 1E-9)force_global_solve::Bool: Ignore EAGO's ability to parse problem types and force it to run global optimization (default = false)unbounded_check::Bool: Check that all branching variables have finite bounds and set them to +/- 1E10 if not (default = true)
EAGO.Evaluator — TypeEvaluatorMOI.AbstractNLPEvaluator for calculating relaxations of nonlinear terms.
Checks that the resulting value should be a number.
user_operators::EAGO.OperatorRegistryhas_user_mv_operator::Boolnum_mv_buffer::Vector{Float64}parameter_values::Vector{Float64}node::NodeBBvariable_values::EAGO.VariableValues{Float64}subgrad_tighten::Boolreverse_subgrad_tighten::Boolsubexpressions::Vector{EAGO.NonlinearExpression}subexpressions_eval::Vector{Bool}is_post::Boolis_intersect::Boolis_first_eval::Boolinterval_intersect::Boolsubgrad_tol::Float64relax_type::EAGO.RelaxTypepass_number::Int64
EAGO.ExtensionType — Typeabstract type ExtensionTypeAn abstract type the subtypes of which are associated with functions method overloaded for new extensions. An instance of this is the DefaultExt <: ExtensionType structure in the ext_type field of the Optimizer.
EAGO.GlobalEndState — Typeprimitive type GlobalEndState <: Enum{Int32} 32An Enum of possible values for EAGO's termination status. This attribute is used by EAGO to explain why the optimizer stopped executing in the most recent call to optimize!. See also MathOptInterface.TerminationStatusCode.
If no call has been made to optimize!, the GlobalEndState value is:
GS_UNSET: The optimization algorithm has not stated.
OK
GS_OPTIMAL: A globally optimal solution was found.GS_INFEASIBLE: The algorithm concluded that no feasible solution exists.
Limits reached
GS_NODE_LIMIT: The branch-and-bound algorithm stopped because it reached the user-set maximum number of nodes in the branch-and-bound tree.GS_ITERATION_LIMIT: The maximum number of iterations was reached.GS_RELATIVE_TOL: The gap between the lower and upper bounds, relative to the bound with the larger magnitude, is within the user-set relative tolerance.GS_ABSOLUTE_TOL: The gap between the lower and upper bounds is within the user-set absolute tolerance.GS_TIME_LIMIT: The algorithm stopped after the user-specified time limit was reached.
EAGO.GlobalOptimizer — Typemutable struct GlobalOptimizer{Q, S, T<:ExtensionType} <: MathOptInterface.AbstractOptimizerOptimizer internal to EAGO which holds information used to perform branch-and-bound in order to solve nonconvex MINLPs.
Descriptions of all fields available in extended help.
Extended Help
_subsolvers::SubSolvers{Q, S} where {Q, S}: Storage for relaxed and upper optimizers to use, and any custom extensions_parameters::EAGOParameters: Parameters that do not change during a global solve_input_problem::InputProblem: Expressions and constraints added to the EAGO model (not directly used for relaxations)_working_problem::ParsedProblem: Expressions and problem descriptions that EAGO uses to formulate relaxed problems_auxiliary_variable_info::Union{Nothing, EAGO._AuxVarData}: Information on any auxiliary variablesobbt_variable_values::Vector{Bool}: Variables to perform OBBT on (default: all variables in nonlinear expressions)enable_optimize_hook::Bool: Specifies that theoptimize_hook!function should be called rather than throw the problem to the standard routineext::Any: (Deprecated, use _subsolvers instead) Storage for custom extension types_end_state::EAGO.GlobalEndState: The completion status code for the branch-and-bound algorithm_termination_status_code::MathOptInterface.TerminationStatusCode: The MathOptInterface-compliant completion status code_result_status_code::MathOptInterface.ResultStatusCode: Value indicating the feasibility status of the result_obj_mult::Float64: Multiplier used internally to convert objective sense from Max to Min. Only takes on values of {-1.0, 1.0}_obj_var_slack_added::Bool: Flag to indicate if a slack variable was added for the objective function. This is done in some epigraph reformulations (seereform_epigraph_min!)_stack::DataStructures.BinaryMinMaxHeap{NodeBB}: A heap of all nodes in the branch-and-bound tree_current_node::NodeBB: The individual node being examined at any particular time. Nodes are removed from the stack and placed here, evaluated, and then sent back to the stack_first_relax_point_set::Bool: (Unused) Flag for relaxation points_current_xref::Vector{Float64}: (Unused) Variable values of a particular point_candidate_xref::Vector{Float64}: (Unused) Variable values of a candidate point_use_prior_objective_xref::Bool: (Unused) Flag to use variable values from previous evaluation on the current step_current_objective_xref::Vector{Float64}: (Unused) Variable values for objective evaluation_prior_objective_xref::Vector{Float64}: (Unused) Variable values for previous objective evaluation_user_branch_variables::Bool: Flag for if the user has specified branch variables (seelabel_branch_variables!)_fixed_variable::Vector{Bool}: Variables that are fixed in place_branch_variable_count::Int64: Number of variables that can be branched on_branch_to_sol_map::Vector{Int64}: Mapping from the branch variables to the full set of variables in the problem_sol_to_branch_map::Vector{Int64}: Mapping from the full set of variables in the problem to the branch variables_continuous_solution::Vector{Float64}: The final (or intermediate) variable values of the solution_preprocess_feasibility::Bool: Flag to ensure preprocessing result is feasible_preprocess_termination_status::MathOptInterface.TerminationStatusCode: Status codes for use in bounds tightening_preprocess_primal_status::MathOptInterface.ResultStatusCode: Status codes for use in bounds tightening_preprocess_dual_status::MathOptInterface.ResultStatusCode: Status codes for use in bounds tightening_lower_primal_status::MathOptInterface.ResultStatusCode: Primal status of the lower problem_lower_dual_status::MathOptInterface.ResultStatusCode: Dual status of the lower problem_lower_termination_status::MathOptInterface.TerminationStatusCode: Termination status of the lower problem_lower_feasibility::Bool: Flag for lower problem feasibility_lower_objective_value::Float64: Objective value result from the lower problem_lower_solution::Vector{Float64}: Variable values of the lower problem solution_lower_lvd::Vector{Float64}: Lower variable duals for use in duality-based bound tightening_lower_uvd::Vector{Float64}: Upper variable duals for use in duality-based bound tightening_last_cut_objective::Float64: Objective value associated with the previous cut in the cutting planes algorithm_upper_result_status::MathOptInterface.ResultStatusCode: Primal status of the upper problem_upper_termination_status::MathOptInterface.TerminationStatusCode: Termination status of the upper problem_upper_feasibility::Bool: Flag for upper problem feasibility_upper_objective_value::Float64: Objective value result from the upper problem_upper_variables::Vector{MathOptInterface.VariableIndex}:_upper_solution::Vector{Float64}:_postprocess_feasibility::Bool: (Unused) Flag to ensure postprocessing result is feasible_time_left::Float64: Time remaining for the optimization algorithm. This is set ininitial_parse!to the user-defined time limit and is decremented throughoutglobal_solve!_start_time::Float64: Storage for thetime()when optimization began_run_time::Float64: Current run time, incremented usingtime()-_start_time_parse_time::Float64: A field to keep track of time spent on initial problem parsing_presolve_time::Float64: Used inoptimize_nonconvex.jlto track how long the presolve step takes_last_preprocess_time::Float64: Updated each iteration to track the time of the preprocess step_last_lower_problem_time::Float64: Updated each iteration to track the time of the lower problem step_last_upper_problem_time::Float64: Updated each iteration to track the time of the upper problem step_last_postprocessing_time::Float64: Updated each iteration to track the time of the postprocess step_last_printed_iteration::Int64: Updated each time an iteration is printed_min_converged_value::Float64: A field to track convergence progress across iterations_global_lower_bound::Float64: The best-known lower bound_global_upper_bound::Float64: The best-known upper bound_maximum_node_id::Int64: The total number of nodes that have been created_iteration_count::Int64: The number of iterations the branch-and-bound algorithm has completed_node_count::Int64: The number of nodes in the stack_solution_value::Float64: (Unused) The best-known solution value_feasible_solution_found::Bool: A flag for if a feasible solution was identified. Updated if preprocessing, lower problem, and upper problem all return feasible values_solution_node::Int64: The node ID of the best-known feasible upper problem solution (default = -1, if no feasible solution is found)_best_upper_value::Float64: The best-known upper bound_obbt_working_lower_index::Vector{Bool}: Indices of variables to perform OBBT on_obbt_working_upper_index::Vector{Bool}: Indices of variables to perform OBBT on_lower_indx_diff::Vector{Bool}: Tracker for changes in obbtworkinglowerindex across iterations_upper_indx_diff::Vector{Bool}: Tracker for changes in obbtworkingupperindex across iterations_old_low_index::Vector{Bool}: Storage for indices prior to OBBT step_old_upp_index::Vector{Bool}: Storage for indices prior to OBBT step_new_low_index::Vector{Bool}: New indices following OBBT step; compared with_old_low_index_new_upp_index::Vector{Bool}: New indices following OBBT step; compared with_old_upp_index_obbt_variables::Vector{MathOptInterface.VariableIndex}: (Deprecated) Variables to perform OBBT on. Replaced by_obbt_working_lower_indexand_obbt_working_upper_index_obbt_variable_count::Int64: The number of variables to perform OBBT on_obbt_performed_flag::Bool: (Unused) Flag to indicate whether OBBT has been performed_lower_fbbt_buffer::Vector{Float64}: Buffer for FBBT lower bounds. Set in presolve, used in preprocess_upper_fbbt_buffer::Vector{Float64}: Buffer for FBBT upper bounds. Set in presolve, used in preprocess_cp_improvement::Float64: (Unused) Improvement in constraint propagation_cp_evaluation_reverse::Bool: (Unused) Flag for if constraint propagation results need to be reversed_cut_iterations::Int64: Iterations of the cutting planes algorithm completed_cut_add_flag::Bool: (Unused) Flag to check if cuts should be added_node_repetitions::Int64: Counter for number of times a node is evaluated. If therepeat_checkfunction is overloaded to returntrue, a node will not be branched on, but will instead be added back into the stack usingsingle_storage!. In this case,_node_repetitionsis incremented_log::Log: Storage for logging information during a branch-and-bound run_affine_relax_ci::Vector{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}}: Storage for affine constraints_affine_objective_cut_ci::Union{Nothing, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.LessThan{Float64}}}: Storage for a linear objective cut constraint_relaxed_variable_number::Int64: (Unused) Number of relaxed variables_relaxed_variable_index::Vector{MathOptInterface.VariableIndex}: Indices of relaxed variables_relaxed_variable_et::Vector{Tuple{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.EqualTo{Float64}}, Int64}}: Stored EqualTo constraints_relaxed_variable_lt::Vector{Tuple{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.LessThan{Float64}}, Int64}}: Stored LessThan constraints_relaxed_variable_gt::Vector{Tuple{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.GreaterThan{Float64}}, Int64}}: Stored GreaterThan constraints_relaxed_variable_integer::Vector{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}}: Stored Integer constraints_branch_variables::Vector{Bool}: List of variables that can be branched on. If not user-specified, branch variables are identified inlabel_branch_variables!_nonbranching_int::Bool: (Unused) Flag for non-branching integers_new_eval_constraint::Bool: Flag indicating if an initial evaluation of the constraints has occurred_new_eval_objective::Bool: Flag indicating if the objective expression was evaluated_node_to_sv_leq_ci::Dict{Int64, MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.LessThan{Float64}}}: Storage for carrying LessThan constraint information. Used inobbt!andupdate_relaxed_problem_box!_node_to_sv_geq_ci::Dict{Int64, MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.GreaterThan{Float64}}}: Storage for carrying GreaterThan constraint information. Used inobbt!andupdate_relaxed_problem_box!_nonlinear_evaluator_created::Bool: Flag to check for nonlinear evaluators. Set totrueinadd_nonlinear_evaluator!_branch_cost::EAGO.BranchCostStorage{Float64}: (FUTURE FEATURE, NOT CURRENTLY IMPLEMENTED) Storage for pseudocost branching_branch_variable_sparsity::SparseArrays.SparseMatrixCSC{Bool, Int64}: (FUTURE FEATURE, NOT CURRENTLY IMPLEMENTED) Sparsity information of the branch variables_constraint_infeasiblity::Vector{Float64}: (FUTURE FEATURE, NOT CURRENTLY IMPLEMENTED) Information on the infeasibility of each constraint
EAGO.Incremental — Typemutable struct Incremental{S<:MathOptInterface.AbstractOptimizer} <: MathOptInterface.AbstractOptimizerA type-stable cache used to wrapper for an optimizer that enables incremental modification of solvers that don't inherently suppport this. Explicitly checks support of MOI functionality used in EAGO.
(Deprecated) For Q = Val{true}, the subsolver supports incremental loading. For Q = Val{false}, the subsolver does not.
EAGO.InputProblem — Typemutable struct InputProblemA structure used to hold objectives and constraints added to the EAGO model. The constraints generally aren't used for relaxations.
All field information available in extended help.
Extended Help
_variable_count::Int64: Count for the number of variables_variable_names::Dict{MathOptInterface.VariableIndex, String}: Dictionary containing variable indices and their names_constraint_count::Int64: Count for the number of constraints_vi_leq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.LessThan{Float64}}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.LessThan{Float64}}}_vi_geq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.GreaterThan{Float64}}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.GreaterThan{Float64}}}_vi_eq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.EqualTo{Float64}}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.EqualTo{Float64}}}_vi_it_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64}}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64}}}_vi_zo_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}}_vi_int_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.Integer}}_parameter_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Parameter{Float64}}, Tuple{MathOptInterface.VariableIndex, MathOptInterface.Parameter{Float64}}}_linear_leq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, Tuple{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}}_linear_geq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, Tuple{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}}_linear_eq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.EqualTo{Float64}}, Tuple{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.EqualTo{Float64}}}_quadratic_leq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.LessThan{Float64}}, Tuple{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.LessThan{Float64}}}_quadratic_geq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, Tuple{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.GreaterThan{Float64}}}_quadratic_eq_constraints::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.EqualTo{Float64}}, Tuple{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.EqualTo{Float64}}}_conic_second_order::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables, MathOptInterface.SecondOrderCone}, Tuple{MathOptInterface.VectorOfVariables, MathOptInterface.SecondOrderCone}}_linear_leq_primal::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, Float64}_linear_geq_primal::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, Float64}_linear_eq_primal::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.EqualTo{Float64}}, Float64}_quadratic_leq_primal::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.LessThan{Float64}}, Float64}_quadratic_geq_primal::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, Float64}_quadratic_eq_primal::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.EqualTo{Float64}}, Float64}_linear_leq_prob_to_ip::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}}_linear_geq_prob_to_ip::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}}_linear_eq_prob_to_ip::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.EqualTo{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.EqualTo{Float64}}}_quadratic_leq_prob_to_ip::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.LessThan{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.LessThan{Float64}}}_quadratic_geq_prob_to_ip::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.GreaterThan{Float64}}}_quadratic_eq_prob_to_ip::Dict{MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.EqualTo{Float64}}, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64}, MathOptInterface.EqualTo{Float64}}}_objective::Union{Nothing, MathOptInterface.VariableIndex, MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.ScalarQuadraticFunction{Float64}}: Storage for the objective function_nlp_data::Union{Nothing, MathOptInterface.NLPBlockData}: Storage for NLP constraints (set byMOI.set(m, ::NLPBlockData...)inmoi_wrapper.jl)_optimization_sense::MathOptInterface.OptimizationSense: Objective sense information (set byMOI.set(m, ::ObjectiveSense...))
EAGO.LocalResultStatus — TypeLocalResultStatusStatus code used internally to determine how to interpret the results from the solution of a local problem solve.
EAGO.Log — Typemutable struct LogA structure used to store information on the history of the solution procedure for generating convergence plots and other analyses.
current_lower_bound::Vector{Float64}: Storage for lower bound calculated for current node.current_upper_bound::Vector{Float64}: Storage for upper bound calculated for current node.preprocessing_time::Vector{Float64}: Storage for preprocessing time of each iteration.lower_problem_time::Vector{Float64}: Storage for lower bounding time of each iteration.upper_problem_time::Vector{Float64}: Storage for upper bounding time of each iteration.postprocessing_time::Vector{Float64}: Storage for postprocessing time of each iteration.preprocessing_feas::Vector{Bool}: Storage for preprocessing feasibility of each iteration.lower_problem_feas::Vector{Bool}: Storage for lower bounding feasibility of each iteration.upper_problem_feas::Vector{Bool}: Storage for upper bounding feasibility of each iteration.postprocessing_feas::Vector{Bool}: Storage for postprocessing feasibility of each iteration.global_lower_bound::Vector{Float64}: Storage for best (global) lower bound at each iteration.global_upper_bound::Vector{Float64}: Storage for best (global) upper bound at each iteration.node_count::Vector{Int64}: Number of nodes at each iteration.run_time::Vector{Float64}: Run time at each iteration.
EAGO.Node — Typestruct Node <: EAGO.AbstractNodeDescribes connectivity and expression represented by node.
EAGO.NodeBB — Typestruct NodeBBStore information associated with each node in the branch-and-bound tree.
lower_variable_bounds::Vector{Float64}: Lower bounds of variable box.upper_variable_bounds::Vector{Float64}: Upper bounds of variable box.is_integer::BitVector: Is dimension integer valuedcontinuous::Bool: Are all dimensions continuous (or fixed)lower_bound::Float64: Lower bound of problem solution on nodeBBupper_bound::Float64: Upper bound of problem solution on nodeBBdepth::Int64: Depth of node in B&B tree.cont_depth::Int64: Depth of first parent in B&B tree that was continuously valuedid::Int64: Unique ID for each node.branch_direction::EAGO.BranchDirection: Whether last branch was negative or positive in directionlast_branch::Int64: Dimension of last branchbranch_extent::Float64: Extent of last branch (using for psuedocost calculation)
EAGO.NodeClass — TypeNodeTypeEach node in the directed graph can be classified into the following types
- VARIABLE: Denotes a decision variable.
- PARAMETER: An adjustable parameter value (not a decision variable).
- CONSTANT: A constant value
- EXPRESSION: Any other expression that isn't a subexpression
- SUBEXPRESSION: Any expression referencing a different graph representation.
EAGO.NonlinearExpression — Typemutable struct NonlinearExpression{V, N, T<:RelaxTag} <: EAGO.AbstractEAGOConstraintStores a general quadratic function with a buffer.
EAGO.Optimizer — Typemutable struct Optimizer{Q, S, T} <: MathOptInterface.AbstractOptimizerThe highest level optimizer object used by EAGO to solve problems during the optimization routine. Additional options and temporary storage are located in the _global_optimizer::GlobalOptimizer{Q,S,T} field. Parameters which are expected to be constant over the entire solve are stored in the _parameters::EAGOParameters field. Some user-facing keywords not in the EAGOParameters field include:
relaxed_optimizer::MOI.AbstractOptimizer: An instance of the optimizer used to solve the relaxed subproblems (default =Cbc.Optimizer()). Located insubsolver_block::SubSolvers{Q,S,T}.upper_optimizer::MOI.AbstractOptimizer: Optimizer used to solve upper bounding problems (default =Ipopt.Optimizer()). Located insubsolver_block::SubSolvers{Q,S,T}.ext::ExtensionType: Holds an instance of a subtype ofEAGO.ExtensionType, used to define new custom subroutines (default =DefaultExt()). Located insubsolver_block::SubSolvers{Q,S,T}.enable_optimize_hook::Bool: Specifies that the user-definedoptimize_hook!function should be called rather than use the standard EAGO optimization routines. Located inOptimizerand_global_optimizer::GlobalOptimizer{Q,S,T}.obbt_variable_values::Vector{Bool}: Variables to perform OBBT on (default: all variables in nonlinear expressions). Located in_global_optimizer::GlobalOptimizer{Q,S,T}.
Descriptions of all Optimizer fields available in extended help.
Extended Help
subsolver_block::SubSolvers{Q, S, T} where {Q, S, T}: Holds definitions of the relaxed and upper optimizers, as well as any user-defined extension typesenable_optimize_hook::Bool: Specifies that the optimize_hook! function should be called rather than throw the problem to the standard routineext::Union{Nothing, T} where T: (Deprecated, usesubsolver_blockinstead) Storage for custom extension types_auxiliary_variable_info::Union{Nothing, EAGO._AuxVarData}: Information on any auxiliary variables_global_optimizer::GlobalOptimizer{Q, S, T} where {Q, S, T}: Additional options and temporary storage for solving optimization problems_input_problem::InputProblem: Expressions and constraints added to the EAGO model (not directly used for relaxations)_working_problem::ParsedProblem: Expressions and problem descriptions that EAGO uses to formulate relaxed problems_parameters::EAGOParameters: Parameters that do not change during a global solve_optimizer_attributes_set::Vector{MathOptInterface.AbstractOptimizerAttribute}: Set of optimizer attributes_termination_status_code::MathOptInterface.TerminationStatusCode: The MathOptInterface-compliant completion status code_result_status_code::MathOptInterface.ResultStatusCode: Value indicating the feasibility status of the result_run_time::Float64: Optimization run time_objective_value::Float64: The objective value of the primal solution_objective_bound::Float64: The best-known bound on the optimal objective value_relative_gap::Float64: The gap between the upper and lower bound, relative to the bound with the larger magnitude_iteration_count::Int64: The number of iterations the branch-and-bound algorithm has completed_node_count::Int64: The number of nodes in the stack
EAGO.ParsedProblem — Typemutable struct ParsedProblemA structure used to store expressions and problem descriptions EAGO uses to formulate relaxed problems.
All field information available in extended help.
Extended Help
_problem_type::Union{Nothing, EAGO.DIFF_CVX, EAGO.LP, EAGO.MILP, EAGO.MINCVX, EAGO.MISOCP, EAGO.SOCP}: Problem classification (set inparse_classify_problem!)_objective_saf::MathOptInterface.ScalarAffineFunction{Float64}: Stores the objective and is used for constructing linear affine cuts_objective::Union{Nothing, MathOptInterface.VariableIndex, EAGO.AffineFunctionIneq, EAGO.BufferedQuadraticIneq, EAGO.BufferedNonlinearFunction}: Storage for the objective function_optimization_sense::MathOptInterface.OptimizationSense: Objective sense information (set byMOI.set(m, ::ObjectiveSense...))_saf_leq::Vector{EAGO.AffineFunctionIneq}_saf_eq::Vector{EAGO.AffineFunctionEq}_sqf_leq::Vector{EAGO.BufferedQuadraticIneq}_sqf_eq::Vector{EAGO.BufferedQuadraticEq}_conic_second_order::Vector{EAGO.BufferedSOC}_nlp_data::Union{Nothing, MathOptInterface.NLPBlockData}_nonlinear_constr::Vector{EAGO.BufferedNonlinearFunction}_relaxed_evaluator::Evaluator_variable_info::Vector{VariableInfo{Float64}}: Variable information (set ininitial_parse!)_variable_count::Int64: Count for the number of variables
EAGO.Relax — TypeRelaxUsed to dispatch relaxations to a standard
EAGO.RelaxAA — TypeRelaxAAEAGO.RelaxMulEnum — TypeRelaxMulEnumEAGO.RelaxResultStatus — TypeRelaxResultStatusStatus code used internally to determine how to interpret the results from the solution of a relaxed problem.
EAGO.SIPHybrid — TypeSIPHybridSpecifies that the SIPHybrid algorithm which implements Algorithm #2 of Djelassi, Hatim, and Alexander Mitsos. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs." Journal of Global Optimization 68.2 (2017): 227-253 should be used.
EAGO.SIPProblem — Type SIPProblemStructure storing problem information for the solution routine.
EAGO.SIPRes — TypeSIPResSpecifies that the SIPRes algorithm which implements Algorithm #1 of Djelassi, Hatim, and Alexander Mitsos. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs." Journal of Global Optimization 68.2 (2017): 227-253 should be used.
EAGO.SIPResRev — TypeSIPResRevSpecifies that the SIPResRev algorithm which implements Algorithm #1 of Djelassi, Hatim, and Alexander Mitsos. "A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs." Journal of Global Optimization 68.2 (2017): 227-253 should be used.
EAGO.SIPResult — TypeSIPResultStructure storing the results of the SIPRes algorithm.
EAGO.SIPSubResult — TypeSIPBufferHold objective value, solution, discretization set, and feasibility status of each subproblem encountered by SIP algorithm.
EAGO.SubSolvers — Typemutable struct SubSolvers{Q<:MathOptInterface.AbstractOptimizer, S<:MathOptInterface.AbstractOptimizer, T<:ExtensionType}A structure containing the relaxed and upper optimizers to be used, as well as any user-defined extension.
relaxed_optimizer::MathOptInterface.AbstractOptimizer: Optimizer used to solve relaxed subproblems. Set usingr = [...](<:MOI.AbstractOptimizer) (default =Cbc.Optimizer())upper_optimizer::MathOptInterface.AbstractOptimizer: Optimizer used to solve upper bounding problems. Set usingu = [...](<:MOI.AbstractOptimizer) (default =Ipopt.Optimizer())ext::ExtensionType: User-defined extension to use. Set usingt = [...](<:EAGO.ExtensionType)
EAGO.VariableInfo — Typestruct VariableInfo{T<:AbstractFloat}A structure used to store information related to the bounds assigned to each variable.
is_integer::Bool: Is the variable integer valued?has_lower_bound::Bool: Boolean indicating whether a finite lower bound exists.has_upper_bound::Bool: Boolean indicating whether a finite upper bound exists.is_fixed::Bool: Boolean indicating if variable is fixed to a finite value.has_constraints::Bool: Boolean indicating that constraints have been setlower_bound::AbstractFloat: Lower bound. May be -Inf.upper_bound::AbstractFloat: Upper bound. May be Inf.